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Frequency-Dependent Characteristics of
Microstrip Discontinuities
in Millimeter-Wave
Integrated Circuits

PISTI B. KATEHI anp NICOLAOS G. ALEXOPOULOS, SENIOR MEMBER, IEEE

Abstract — A theoretical approach for the representation of microstrip
discontinuities by equivalent circuits with frequency-dependent parameters
is presented. The model accounts accurately for the substrate presence and
associated surface-wave effects, strip finite thickness, and radiation losses.
The method can also be applied for the solution of microstrip components
in the millimeter frequency range.

I. INTRODUCTION

HE LITERATURE on the theory of microstrip lines

and microstrip discontinuities is extensive but, almost
without exception, the published methods do not account
for radiation and discontinuity dispersion effects. Micro-
strip discontinuity modeling was initially carried out either
by quasi-static methods [1]-[12] or by an equivalent wave-
guide model [13]-[22]. The former approach gives a rough
estimate of the discontinuity parameters valid at low fre-
quencies, while the latter gives some information about
dispersion effects at higher frequencies. However, the ap-
plicability of the latter model is also of limited value since
it does not account for losses due to radiation and surface-
wave excitation at the microstrip discontinuity under inves-
tigation. Therefore, it is reasonable to assume that the data
obtained with this model are accurate only at the lower
frequency range, i.e., before radiation losses become sig-
nificant.

In this paper, three types of microstrip discontinuities
are presented by equivalent circuits with frequency-depen-
dent parameters (see Fig. 1). The implemented method
accounts accurately for all the physical effects involved
including surface-wave excitation [23], {24]. The model
developed in this paper also accounts for conductor thick-
ness and it assumes that the transmission-line and reso-
nator widths are much smaller than the wavelength. The
latter assumption insures that the error incurred by neglect-
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Fig. 1. Microstrip discontinuities and equivalent circuits. (a) Open-cir-
cuit microstrip line. (b) Microstrip gap. (¢) Coupled microstrip reso-
nator. )

ing the transverse vector component of the current distri-
bution on each conducting strip is a second-order effect.
For each type of discontinuity, the method of moments is
applied to determine the current distribution in the longi-
tudinal direction, while the longitudinal current depen-
dence in the transverse direction is chosen to satisfy the
edge condition at the effective width location [28]. Upon
determining the current distribution, transmission-line the-
ory is invoked to evaluate the elements of the admittance
matrix for the open-end and the gap discontinuities (Fig.
1(a) and (b)). The same method is also applied for evalua-
tion of the resonant frequency of the coupled microstrip
resonator (Fig. 1(c)). The equivalent circuits for the first
two discontinuities are evaluated and compared with the
results obtained by a quasi-static method based on the
concept of excess length and equivalent capacitance. Al-
though the quasi-static model does not include the discon-

0018-9480 /85 /1000-1029$01.00 ©1985 TEEE



1030

tinuity’s radiation conductance in the equivalent circuits, it
yields results which at low frequencies are in good agree-
ment with previously published data [S]. However, a com-
parison of the quasi-statically obtained results with those
of the dynamic model developed in this paper shows the
inadequacy of the quasi-static approach.

II. ANALYTICAL FORMULATION

A. Current Distribution Evaluation

The current distribution on the transmission-line sec-
tions for the discontinuities considered here radiates an
electric field given by Pocklingion’s integral equation

E(7)= [[GG/m) i) as (1)

where E (7) is the total electric field at the point r =(r,0,0),
G(7/7") is the dyadic Green’s function and J(r’) is the
unknown current distribution at the point 7= (#/,0’ =
7/2,¢’). The dyadic Green’s function is given by the ex-
pression

G(7/7) = ]O“’[kgf +99 |- (H(AF=7)F(N)) dA
(2)

with I the unit dyadi¢, k,=2w/A,, and I?(A) a known

dyadic function of the form
- AN e, h)
F(A)= L )
( ) fl(x’emh)fl(}\aer)h)

®3)

In (3), €, is the relative dielectric constant of the substrate,
h is the substrate thickness, and f;, f, are analytic func-
tions of their variables [29], [30].

The integrand in (2) has poles whenever either one of the
functions f,(A, €,, &), (A, €,, h) becomes zero. The contri-
bution from these poles gives the field propagating in the
substrate in the form of TE or TM surface waves [30].
Particularly, the zeros of fi(A,¢,, #) cortespond to TE
surface waves, while the zeros of f2(>\, €,, h) to TM surface
waves,

Since the widths of the microstrip sections are fractions
of the wavelength in the dielectric, it can be assumed that
the currents are unidirectional and parallel to the x-axis.
Therefore, the current vector in (1) may be written in the
form

J(7) =% (x)8(y") 4)
where f(x’) is an unknown function of x’ and g(y’) is
assumed to be of the form

T

In (5), w, is the effective strip width given by w, =w +28,
where 8 is the excess half-width and it accounts for fring-
ing effects due to conductor thickness. Formulas for effec-
tive width exist in the literature [25], [26] and they have
been adopted in this formulation [28].
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In order to solve (1) for the current density J, the
method of moments is employed. Each section of the
microstrip is divided into a number of segments, and the
current is written as a finite sum

T(7) = 2¢(y") Z:Infn(x') (©)

where N is the total number of segments considered and
the expansion functions f,(x’) have been chosen to be
piecewise sinusoidal functions given by

Sin[kO(xl - xn—-l)]
sin(kyl,) ’

sin[ko(an — x,)]
sin(kql,,) ’

0, otherwise

’
X, 1<x'<x,

f(x) =

X, <X <X,

(7

with /_ being the length of each subsection.
If the electric field is projected along the axis y =0,z =0
using as weighting functions the basis functions (Galerkin’s
method), (1) will reduce to a matrix equation of the form

[Z,,] [1,] = [V.] (8)
NXN(Nx1) (NXx1)

where [1,] is the vector of unknown coefficients and [V, ] is
the excitation vector which depends on the impressed feed
model. [Z,,,] is the impedance matrix with elements given
by

3 N [ dy’
Z,y=8(1)8(2) [ wﬂ————[l_ (Q)]/
e f xR+ s (F = B0 (3)
©)

where

Jopg | o[ _sinh(uh) ) —uot
F_=2l~—— ——— = | J (A ol d A
xx (477](8’)’/(; (fl(}\aenh) 0( p)e

(10)

and

R b oI bt Facwstn)

Jo(Ap)e~*tdA. (11)
In (9) and (10)
B O e
(12)
fi(M,¢€,, h) =ugsinh(uh)+ ucosh(uh) (13)
(N, €,, h) = ¢,ugcosh(uh)+ usinh(uh) (14)
and
==+ G- )
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Fig. 2. Modeling of the excitation mechanism for a microstrip transmis-
sion line.

Using this form for the evaluation of the elements of the
impedance matrix, one can solve the matrix equation shown
in (8) to find the unknown coefficients for the current.

B. Excitation Mechanism — Equivalent Impedance

One difficulty always encountered in this type of prob-
lem is the implementation of a practical excitation- mecha-
'nism which can be included in the mathematical modeling.
In most applications, the microstrip line is kept as close to

the ground as possible and is excited by a coaxial line of’

the same characteristic impedance. As a result, a unimodal
field is excited under the transmission line, reflection at the
excitation end is minimized, and the current distribution
on the line beyond an appropriate reference plane forms
standing waves of a transverse electromagnetic (TEM)-like
mode. Thus, this microstrip line can' be approximated by
an ideal transmission line of the same characteristic imped-
ance Z, terminated to an unknown equivalent impedance
Z, (see Fig. 2). It can be shown (see Appendix A) that the
reflection coefficient does not change in amplitude and
phase if the coaxial line is substituted with a voltage gap
generator and the line is left open at the excitation end
(see Fig. 2(c)). This excitation mechanism is adopted for
the application of moments method in the solution of
Pocklington’s integral equation and results in an excitation
vector [V,,]=[8,,.] with

im

5 1 at the position of the gap generator (x, = x,,)
"~ |0 everywhereelse (x, # x,,) '

The equivalent ideal transmission line for this type of
excitation is shown in Fig. 2(d) where Z, = Z,_ for the case
of an open-end microstrip discontinuity. The quasi-TEM
mode considered has a wavelength A, equal to the domi-
nant spatial frequency of the amplitude of the current
which is derived by the method of moments.

If the origin of the x coordinate is taken at the position
of Z,, then the equivalent impedance, normalized with
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Fig. 3. Characteristic impedance Z, and guide wavelength A, /Aqof a
microstrip line as a function of frequency (¢,=9.6,w/h=1,h=06
mm).

respect to the characteristic impedance, is given by [28]

_1+T(0)
Z4=12T(0) (16)
where
SWR-1
L0) =~ spre1e” ™ (17)

and x,,, is the position of a maximum.

From (16) and (17), one can see that the accurate
determination of equivalent circuits for different discon-
tinuities depends on the accuracy of evaluating the char-
acteristic impedance Z, and guided wavelength A (B =
2a/A,). The characteristic impedance of the transmission
line of Fig. 2(d) is given by (see Appendix B)

Zy= IIL i —Z‘E B %maxl 4 %—I&eﬁm"m"'

maxl oc

oc

(18)

where x . is the position of a maximum and || is the
maximum amplitude of the current. Z,, is the normalized
equivalent impedance of an open-circuited microstrip line
of length /=(n/2)A,(n=>8) and the gap generator is
placed at a position A, /4 from one end. The characteristic
impedance and guided wavelength are shown as functions
of frequency in Fig. 3. These results are in excellent agree-
ment with already existing data [25].

III. NUMERICAL RESULTS

A. Microstrip Open-Circuit Discontinuity

The equivalent circuit from an open-end discontinuity,
as shown in Fig. 1, consists of a capacitance C,, in parallel
with a conductance G,,, which is proportional to radiation
losses. Using the method presented previously, values for
the normalized capacitance C,./w in pF/m and for the
conductance G,. (in mmhos) are plotted as functions of
frequency for a microstrip line with w/h =1 on a 0.6-mm
Alumina substrate (see Fig. 4). From these data, one can
conclude that the radiation conductance increases with

frequency while the capacitance decreases.
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Fig. 4. Radiation conductance G,, and normalized capacitance C,, /w
of an open-circuited microstrip line as functions of frequency (¢, =
9.6,w/h =1, h=0.6 mm).
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Fig. 5. Gap discontinuity and equivalent circuits.

B. Microstrip Gap Discontinuity

The equivalent circuit for a microstrip gap is shown in
Fig. 1. For the evaluation of G,, C,, G,, and C,, both
sections of the microstrip are excrted by gap generators
which are either in phase (see Fig. 5(a)) or out of phase
(Fig. 5(c)). The former case is equivalent to the presence of
a magnetic wall in the middle of the gap, while the latter to
an electric wall at the same position. The equivalent cir-
cuits for these two excitations are shown in Fig. 5(b) and
(c) and give

Y,=G,+ juC,=Y,,+ Y}, (19)

and

Y,=G,+ jeC,=Y,,-Y, (20)

where Y,, Y, are the equivalent normalized admittances for
the case of the electric and magnetic wall, respectively.
From (19) and (20), the conductances and capacitances of
a p-type equivalent circuit are given by

G,=G, (21)
C,=GC, (22)
=3(6.-G,) (23)
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Fig. 6. Gap-discontinuity radiation conductances G,, G,, and normal-
ized capacitances Cy/w, C,/w as functions of frequency (¢, =
9.6,w/h=1,h=106 mm s/h 0.3762).
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Fig. 7. Gap-discontinuity admittance matrix elements as functions of
frequency (¢, = 9.6,w/h=1,h = 0.6 mm, s /h = 0.3762).

and

-i(¢,-¢,) (24
Values of G,, C,, G,, and C, are plotted as functions of
frequency for a rmcrostnp llne with w/h=1 on a 0.6-mm
Alumina substrate (Fig. 6). From the values for the gap
and open-end conductances (Figs. 4 and 6), one can see
that as the frequency increases, the radiation losses become
higher and, therefore, the inter-circuit coupling through
space and surface waves becomes a dominant factor in the
design of printed circuits. From (19)—(24), the elements of
the admittance matrix of the discontinuity considered as a
two port can be found in amplitude and phase as functions
of frequency (see Fig. 7).

C. Excess Length and Equivalent Capacitances

Another method of deriving equivalent circuits is based
on the evaluation of excess length. The method developed
here results in values for the excess length in such a way so .
as to take into account dispersion and radiation losses. The
dominant reason for loss of accuracy at high frequencies
by this method is the way the equivalent capacitance is
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Fig. 8. Open-circuit normalized excess length and normalized capaci-
tances as functions of frequency (¢, = 9.6, w/h =1, h = (0.6 mm).

evaluated. The excess length A/, is measured from the
standing waves of the amplitude of the computed current

(25)

where A is the guided wavelength and d_,,, is the position

of the first maximum of the current amplitude from the

open end. The discontinuity capacitance C; is evaluated as

a function of A/, from the following relation [25]:
G

Al, — 1 h
= a7y,

where ¢ is the effective dielectric constant and Z; the
characteristic impedance. Equation (26) gives quasi-static
values for the capacitance and, therefore, is accurate for
low frequencies only.
In Fig. 8, the open-end normalized equivalent capaci-
tance C2 /w in pF /m is plotted as a function of frequency
“and is compared to the values derived with the exact
method. As shown, the values of the two capacitances
agree at the lower part of the frequency range and they
shift away as the frequency becomes higher. In addition,
the capacitances C,, C, of the p-type equivalent circuit
derived with the two methods are compared and they show
a big discrepancy at high frequencies where (25) becomes
much less accurate (Fig. 9).

A,
Al,=-%-d

4 max

(26)

D. Coupled Microstrip Resonator

For this discontinuity, the transmission-line model is
used for the evaluation of the normalized equivalent im-
pedance Z, as a function of frequency (see Fig. 1(c)). The
normalized impedance Z, is measured at A, /4 from the
open end. In Fig. 10, the real and imaginary parts of Z_are
plotted as functions of frequency for a microstrip line with
w/h=1, t =0.0001A, on a 0.05A ,-thick Alumina substrate
(€,=9.9), and for a gap s = 0.01A,,. The lengths have been

. measured in terms of the free space wavelength A, at a
specified frequency f,. The resonator length L, varies
between 0.031A, and 0.033A,. Fig. 10 implies that there
exists a particular length L, for which the VSWR on the
transmission line at the resonant frequency f, becomes
unity. Fig. 11(a) indicates that the resonant frequency
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Fig. 9. Gap-discontinuity normalized capacitances: C,/w, C,/w as
functions of frequency (¢, = 9.6,w/h =1, h = 0.6 mm,s/h = 0.3762).
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Fig. 10. Normalized equivalent impedance Z, as a function of frequency
fandgap s (e,=9.9,w/h=1,h=0.05A, L, = 0.032X,).

decreases as the resonator length becomes larger. It is also
very interesting to see how the resonant frequency changes
as a function of the length of the gap. Fig. 11(b) shows that
the resonant frequency increases as the gap becomes larger,
while the resonator length was kept constant and equal to
0.032 A,

IV. CONCLUSION

The representation of microstrip discontinuities by
equivalent circuits or admittance matrices has been treated
by an effective method. The current distribution is com-
puted by the method of moments in the longitudinal
direction of the microstrip discontinuities, while in the-
transverse direction it is chosen as the Maxwell distribu-
tion, thus satisfying the edge condition. Upon determining
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£,(5,) - current is given by
2
I(x
o\ D s o) = rwep(x). (4)
1 02} 4 (a)
. \ From (1A) to (3A), one can conclude that the voltage and
I \ ] the current in this transmission line are of the form
oe L N I(x <) = Be "+ B,e/F* (x<0) (4A)
T e oo e oo oo L0 I(x>)= Ale_jﬁx + Azejﬁx (x=20) (5A)
V(x<)=2Zy(A1eP*— 4,%)  (x<0) (6A)
f06) and :
ral ] o V(x > )'= ZO(BleUBx - Bzejﬁx) (x = 0).
- . _ (7A)
‘ / The boundary conditions for this problem are
. Y _
0.01  0.02 0.03 0.04 0.05 gap () I(l) (SA)
Fig. 11. Resonant frequency f, as a function of the resonator length and V( - xo)
the gap. —“—I( %) = (9A)
- 0
the current, a transmission-line model is used for the Ix<)=I(x>)atx=0
representation of the unimodal field excited under the and (10A)
microstrip line. dl(x>) _dl(x<) — BYV. (11A)
Therefore, the normalized admittance matrix is evaluated dx x=0 dx o VoRl4D
in terms of equivalent admittances. This method takes into  prom (4 A) through (11A), one can find that
H(x>)=— 1+ Z, cos(Bxqy)— jZ,.sin( Bx,)
Zy (Z,,—2Z,)cos[B(I—x,)]+ j(Z,.Z;—1)sin| B(I - x,)]
. 1-Z
e iBGx=D 4 Troc +iB(x—1)
{e +1+Zwe s } . (12A)

account dispersion and radiation losses, provides us with
equivalent circuits which are an accurate representation of
the discontinuities under consideration, and does not have
any frequency limitations. Furthermore, this method was
compared with results obtained through a quasi-static as
well as a waveguide model and was found superior. The
accuracy of the method depends on the accuracy of
evaluating A, x,,,, and VSWR. This implies that if more
subsections are considered in the method of moments, the
error will become smaller. In the present derivations, the
estimated error is up to two percent.

APPENDIX A

The transmission line of Fig. 2(d) is considered and it is
assumed that the voltage generator is at the position x =0
and that Z,+ Z,,.. The coupled differential equations for
the voltage and current in this transmission line are of the
form

_dl(x
() _ vy (x) (1A)
and
dv(x)
— = IBZI(x)+Ved(x). (2A)
From (1A) and (2A), the differential equation for the

From (5A) and (12A), the current reflection coefficient is
given by :

4, 1-2Z

=4 T 1+ 2,

If the case is considered where the left end of the

microstrip line is matched (see Fig. 2(b)), then B, =0 and

I"‘(x>)—-—ZLO{e x4

0¢ ,=2jBI

(13A)

1=z, g eJBxe—2jBl}
(14A)
with
1-Z

P;n % oc¢ —Zjﬁl

(15A)

From (13A) and (15A), one can conclude that the ampli-
tude and phase of the reflection coefficient do not change
when the line is matched at the generator end.

APPENDIX B
If x,, [ are equal to A, /4 and n(A,/2), then
2n—1
- Xg= _Z_—_}\g (Bl)
and
1+Z, Z 1-Z
I(x>)= oc¢ —Bx 4 . “oc Jﬁx}'
(x>)=—7 zoczd—l{e 1+2,.°
(B2)
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At x:i—x

» ax for Z,=7Z, ., the absolute value of the
current is given by
1] z N 1-2,, _
= | ——2c __ jﬁlxmaxl 1 _Jﬂlxmaxl
Ul = Z-1 77 | € t177,,°

(B3)

where x,, max 18 the position of a maximum measured from
the equivalent impedance Z, Equation (17) is derived
from (B3).
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